www.multichannelsystems.com

Innovations in Electrophysiology

Suprachiasmatic nucleus (SCN)

1. Aton, S.J., et al., Plasticity of circadian behavior and the suprachiasmatic nucleus following exposure to non-24-hour light cycles. J Biol Rhythms, 2004. 19(3): p. 198-207.

2. Aton, S.J., et al., Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci, 2005. 8(4): p. 476-83.

3. Aton, S.J., et al., GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proc Natl Acad Sci U S A, 2006. 103(50): p. 19188-93.

4. Freeman, G.M., Jr., et al., GABA Networks Destabilize Genetic Oscillations in the Circadian Pacemaker. Neuron, 2013. 78(5): p. 799-806.1. Mazuski, C., et al., Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons. Neuron, 2018. 99(3): p. 555-563 e5.

2. Hermanstyne, T.O., et al., Acute Knockdown of Kv4.1 Regulates Repetitive Firing Rates and Clock Gene Expression in the Suprachiasmatic Nucleus and Daily Rhythms in Locomotor Behavior. eNeuro, 2017.

3. Hanna, L., et al., Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input. J Physiol, 2017. 595(11): p. 3621-3649.

4. Freeman, G.M., Jr., et al., GABA Networks Destabilize Genetic Oscillations in the Circadian Pacemaker. Neuron, 2013. 78(5): p. 799-806.

5. Granados-Fuentes, D., et al., IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Neuronal Firing in the Suprachiasmatic Nucleus and Circadian Rhythms in Locomotor Activity. J Neurosci, 2012. 32(29): p. 10045-52.

6. Mordel, J., et al., Activation of glycine receptor phase-shifts the circadian rhythm in neuronal activity in the mouse suprachiasmatic nucleus. J Physiol, 2011. 589(Pt 9): p. 2287-300.

7. Tousson, E., PACAP – Melatonin Interaction in Mouse Suprachiasmatic Nucleus Slice Cultures. J Neurol Sci [Turk], 2010. 27: p. 333-343.

8. Weng, S., K.Y. Wong, and D.M. Berson, Circadian modulation of melanopsin-driven light response in rat ganglion-cell photoreceptors. J Biol Rhythms, 2009. 24(5): p. 391-402.

9. Webb, A.B., et al., Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc Natl Acad Sci U S A, 2009. 106(38): p. 16493-8.

10. Klisch, C., et al., Orexin A modulates neuronal activity of the rodent suprachiasmatic nucleus in vitro. Eur J Neurosci, 2009. 30(1): p. 65-75.

11. Herzog, E.D., Neurons and networks in daily rhythms. Nat Rev Neurosci, 2007. 8(10): p. 790-802.

12. Klisch, C., S. Mahr, and H. Meissl, Circadian activity rhythms and phase-shifting of cultured neurons of the rat suprachiasmatic nucleus. Chronobiol Int, 2006. 23(1-2): p. 181-90.

13. Aton, S.J., et al., GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proc Natl Acad Sci U S A, 2006. 103(50): p. 19188-93.

14. Aton, S.J., et al., Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci, 2005. 8(4): p. 476-83.

15. Tousson, E. and H. Meissl, Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. J Neurosci, 2004. 24(12): p. 2983-8.

16. Herzog, E.D., et al., Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J Biol Rhythms, 2004. 19(1): p. 35-46.

17. Hastings, M.H. and E.D. Herzog, Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J Biol Rhythms, 2004. 19(5): p. 400-13.

18. Aton, S.J., et al., Plasticity of circadian behavior and the suprachiasmatic nucleus following exposure to non-24-hour light cycles. J Biol Rhythms, 2004. 19(3): p. 198-207.

19. Herzog, E.D. and R.M. Huckfeldt, Circadian entrainment to temperature, but not light, in the isolated suprachiasmatic nucleus. J Neurophysiol, 2003. 90(2): p. 763-70.

5. Granados-Fuentes, D., et al., IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Neuronal Firing in the Suprachiasmatic Nucleus and Circadian Rhythms in Locomotor Activity. J Neurosci, 2012. 32(29): p. 10045-52.

6. Hanna, L., et al., Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input. J Physiol, 2017. 595(11): p. 3621-3649.

7. Hastings, M.H. and E.D. Herzog, Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J Biol Rhythms, 2004. 19(5): p. 400-13.

8. Hermanstyne, T.O., et al., Acute Knockdown of Kv4.1 Regulates Repetitive Firing Rates and Clock Gene Expression in the Suprachiasmatic Nucleus and Daily Rhythms in Locomotor Behavior. eNeuro, 2017.

9. Herzog, E.D., Neurons and networks in daily rhythms. Nat Rev Neurosci, 2007. 8(10): p. 790-802.

10. Herzog, E.D., et al., Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J Biol Rhythms, 2004. 19(1): p. 35-46.

11. Herzog, E.D. and R.M. Huckfeldt, Circadian entrainment to temperature, but not light, in the isolated suprachiasmatic nucleus. J Neurophysiol, 2003. 90(2): p. 763-70.

12. Klisch, C., et al., Orexin A modulates neuronal activity of the rodent suprachiasmatic nucleus in vitro. Eur J Neurosci, 2009. 30(1): p. 65-75.

13. Klisch, C., S. Mahr, and H. Meissl, Circadian activity rhythms and phase-shifting of cultured neurons of the rat suprachiasmatic nucleus. Chronobiol Int, 2006. 23(1-2): p. 181-90.

14. Mazuski, C., et al., Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons. Neuron, 2018. 99(3): p. 555-563 e5.

15. Mordel, J., et al., Activation of glycine receptor phase-shifts the circadian rhythm in neuronal activity in the mouse suprachiasmatic nucleus. J Physiol, 2011. 589(Pt 9): p. 2287-300.

16. Tousson, E., PACAP – Melatonin Interaction in Mouse Suprachiasmatic Nucleus Slice Cultures. J Neurol Sci [Turk], 2010. 27: p. 333-343.

17. Tousson, E. and H. Meissl, Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. J Neurosci, 2004. 24(12): p. 2983-8.

18. Webb, A.B., et al., Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc Natl Acad Sci U S A, 2009. 106(38): p. 16493-8.

19. Weng, S., K.Y. Wong, and D.M. Berson, Circadian modulation of melanopsin-driven light response in rat ganglion-cell photoreceptors. J Biol Rhythms, 2009. 24(5): p. 391-402.